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Initial Validation of a Machine Learning-Derived
Prognostic Test (KidneylntelX) Integrating Biomarkers
and Electronic Health Record Data To Predict
Longitudinal Kidney Outcomes
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Abstract

Background Individuals with type 2 diabetes (T2D) or the apolipoprotein L1 high-risk (APOL1-HR) genotypes are
at increased risk of rapid kidney function decline (RKFD) and kidney failure. We hypothesized that a prognostic
test using machine learning integrating blood biomarkers and longitudinal electronic health record (EHR) data
would improve risk stratification.

Methods We selected two cohorts from the Mount Sinai BioMe Biobank: T2D (n=871) and African ancestry with
APOL1-HR (n=498). We measured plasma tumor necrosis factor receptors (TNFR) 1 and 2 and kidney injury
molecule-1 (KIM-1) and used random forest algorithms to integrate biomarker and EHR data to generate a risk
score for a composite outcome: RKFD (eGFR decline of =5 ml/min per year), or 40% sustained eGFR decline, or
kidney failure. We compared performance to a validated clinical model and applied thresholds to assess the utility
of the prognostic test (KidneyIntelX) to accurately stratify patients into risk categories.

Results Overall, 23% of those with T2D and 18% of those with APOL1-HR experienced the composite kidney end
point over a median follow-up of 4.6 and 5.9 years, respectively. The area under the receiver operator
characteristic curve (AUC) of KidneyIntelX was 0.77 (95% CI, 0.75 to 0.79) in T2D, and 0.80 (95% CI, 0.77 to 0.83) in
APOLI1-HR, outperforming the clinical models (AUC, 0.66 [95% CI, 0.65 to 0.67] and 0.72 [95% CI, 0.71 to 0.73],
respectively; P<<0.001). The positive predictive values for KidneyIntelX were 62% and 62% versus 46% and 39%
for the clinical models (P<0.01) in high-risk (top 15%) stratum for T2D and APOL1-HR, respectively. The negative
predictive values for KidneyIntelX were 92% in T2D and 96% for APOL1-HR versus 85% and 93% for the clinical
model, respectively (P=0.76 and 0.93, respectively), in low-risk stratum (bottom 50%).

Conclusions In patients with T2D or APOLI-HR, a prognostic test (KidneyIntelX) integrating biomarker levels
with longitudinal EHR data significantly improved prediction of a composite kidney end point of RKFD, 40%
decline in eGFR, or kidney failure over validated clinical models.
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Introduction

CKD affects >35 million individuals in the United
States. Diabetic kidney disease due to type 2 diabetes
(T2D) accounts for 44% of patients with ESKD and is
a major independent risk factor for other complica-
tions. Those with African ancestry have higher rates of
ESKD compared with European Americans across all
baseline eGFR levels (1,2). Of relevance, genetic studies
demonstrated that two distinct alleles in the apolipo-
protein L1 (APOLI) gene confer increased risk for
many kidney diseases in those with African ancestry.
The APOL1 high-risk (APOL1-HR) genotypes (i.e., two
copies of risk allele) are associated with increased risk

of ESKD, CKD incidence/progression (3), and eGFR
decline (4,5).

Although these populations are on average at higher
risk than the general population, accurate prediction of
who will have rapid kidney function decline (RKFD),
defined as eGFR decline >5 ml/min per 1.73 m? per
year, and worse kidney outcomes is lacking (6,7). A
current standard for ESKD prediction in CKD stages
3-5 is the Kidney Failure Risk Equation, where clinical
variables are assigned standard weights for a recursive
score calculation. However, the Kidney Failure Risk
Equation has not been validated in individuals with
relatively preserved kidney function at baseline (8).
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Recent work has shown other recursive scores may aide in
risk prediction of kidney outcomes in patients with pre-
served kidney function (9).

Several biomarkers have been investigated to aide in the
prediction of kidney outcomes (10). Three of the most ex-
tensively studied and strongly associated biomarkers with
kidney disease progression in several settings are soluble
tumor necrosis factor receptors (TNFR) 1 and 2 and plasma
kidney injury molecule-1 (KIM-1) (11-19). Although these
markers have uniformly shown an independent association
with kidney outcome risk along with specific clinical var-
iables such as eGFR and urinary albumin-creatinine ratio
(UACR), the implementation of accurate models that com-
bine clinical data with these plasma biomarkers to predict
progression of kidney disease is unavailable.

Widespread electronic health record (EHR) usage pro-
vides the potential to leverage thousands of clinical features.
Standard statistical approaches are inadequate to leverage
this data due to feature volume, unaligned nature of data,
and correlation structure (3). However, contemporary ma-
chine learning approaches have improved the capacity of
analytical model development to combine both biomarkers
and longitudinal EHR data for improved prediction.

In this study, we used retrospectively collected plasma
samples linked to longitudinal clinical data from the Icahn
School of Medicine at Mount Sinai (ISMMS) BioMe Biobank
to examine the ability of a prognostic test (KidneyIntelX)
that uses machine learning algorithms to predict RKFD and
kidney outcomes in two discrete, high-risk patient popula-
tions, T2D and APOLI-HR.

Materials and Methods
The BioMe Biobank at ISMMS

The BioMe Biobank at ISMMS is an institutional review
board-approved biorepository that includes consented ac-
cess to the patients” EHR from a diverse community in New
York City, New York (10,11). Operations were initiated in
2007 and include direct recruitment from >30 broadly se-
lected clinical sites. For the purpose of this study, we se-
lected two subpopulations: (1) T2D, enrollment eGFR
45-90 ml/min, and =3 years of follow-up data; and (2)
APOLI-HR, enrollment eGFR >30 ml/min and =3 years of
follow-up data. We included all patients from these two
biobanks meeting these criteria (1=1369).

Ascertainment and Definition of the Kidney End Point

We determined eGFR using the CKD-Epidemiology Col-
laboration equation and eGFR slope using a minimum of
three values from baseline. The primary composite outcome
was comprised of three components: RKFD, defined as an
eGFR slope decline of =5 ml/min per 1.73 m? per year
(20-23), or a sustained (confirmed =3 months later) decline
in eGFR of =40% (20) from baseline, or “kidney failure”
defined by sustained eGFR <15 ml/min per 1.73 m? con-
firmed at least 30 days later or long-term maintenance di-
alysis or kidney transplant (i.e., ESKD) (23-28).

Ascertainment of Clinical Variables in BioMe Biobank
Sex and race were obtained from an enrollment ques-
tionnaire. Clinical data were extracted for all continuous

variables at the time of and before baseline from the EHR
with concurrent time stamps. Hypertension and T2D
were determined using phenotyping algorithms (29-31).
Cardiovascular disease and heart failure were determined
by a validated algorithm and International Classification
of Diseases, Ninth/Tenth Revision codes, respectively. We
considered a participant to be on an angiotensin-converting
enzyme inhibitor or angiotensin receptor blocker if they
had a concurrent prescription at enrollment. We calculated
follow-up time from enrollment to the latest visit. Only
variables present in >70% of subjects (except UACR/BP
due to their established clinical importance) were included
and used for training of the KidneyIntelX algorithm.

Biospecimen Storage and Analyte Measurement

Plasma specimens collected on the day of BioMe enroll-
ment were stored continuously at —80°C. The biomarkers
were measured in a multiplex format using the Meso Scale
platform (Meso Scale Diagnostics, Gaithersburg, MD),
employing proprietary electrochemiluminescence detection
methods combined with patterned arrays allowing for ana-
lyte multiplexing. The intra- and interassay coefficient of
variation for quality control samples with known low,
moderate, and high concentrations of each biomarker run
on each plate were 3.5%, 3.9%, and 4.5%; and 12.4%, 10.8%,
and 7.7% for TNFR1, TNFR2, and KIM-1, respectively. The
laboratory personnel were blinded to clinical information.

Statistical Analyses

We expressed descriptive results for the participants’
baseline characteristics and biomarkers via means and SD
or, for skewed variables, medians and interquartile ranges
(IQRs).

For the random forest model, we considered two inputs:
(1) biomarker concentrations/ratios; and (2) EHR features
including laboratory values, diagnosis/procedure codes,
demographics (age, sex, and listed race), medications, and
healthcare encounter history. Missing UACR values were
imputed to 10 mg/g (9), missing BP values were imputed
using multiple predictors (age, sex, race, and antihyperten-
sive medications) (32), and median value imputation was
used for other missing values. We then created meta-
features from these variables including maximum, mini-
mum, median, variability, and change over time to account
for their longitudinal aspect and repeated nature. For model
development, the clinical data was randomly and demo-
graphically split to create an 80%:20% training and test set,
respectively, with 10-fold cross-validation on all candidate
models.

We then performed further iterations of the random forest
model by tuning three hyperparameters. Hyperparameter 1
is the number of decision trees, hyperparameter 2 is the
number of variables randomly selected for splitting at each
node, and hyperparameter 3 is the minimum size of termi-
nal nodes. The final model that had the best area under the
receiver operator characteristic curve (AUC) was chosen.

We generated risk probabilities for the composite kidney
end point using the final model on all subjects from both
cohorts (T2D and APOL1-HR) and then scaled to generate
a continuous score. We compared KidneyIntelX to a pub-
lished validated clinical model consisting of a regression
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equation for 40% eGFR decline prediction (9) including age,
sex, race, eGFR, cardiovascular disease, smoking, hyperten-
sion, body mass index, and UACR in individuals who are
nondiabetics and the aforementioned variables plus insulin,
diabetes medications, and hemoglobin Alc for patients with
T2D (eTablell in (9)). We compared all differences between
AUCs using the DeLong test for comparisons.

We examined the thresholds of the risk score to define
low-, intermediate-, and high-risk strata in each cohort. The
low-risk stratum was set to encompass 50% of the study
population, and the thresholds for the high-risk stratum
were assessed to classify the top 10%, 15%, and 20% highest
risk in each cohort. The remaining population was defined
as the intermediate-risk stratum. We calculated sensitivity,
specificity, and positive predicted values/negative predicted
values (PPV/NPV) for the high-risk and low-risk cutoffs
and compared these to the clinical model. The goodness-
of-fit statistics (Hosmer-Lemeshow) was used to assess
calibration.

We then conducted subgroup/sensitivity analyses: (1) in
individuals with existing CKD (eGFR <60 ml/min per
1.73 m? and /or UACR >30 mg/g at baseline), and (2) using
only data from =<1 year before biomarker measurement (i.e.,
“contemporary data,” to ensure that KidneyIntelX was ro-
bust in advanced stages of the disease and performed
equally well with clinical data limited to a year before
biomarker measurement). (3) We generated a trained and
tested random forest model that did not include any of the
biomarkers (TNFR1, TNFR2, or KIM-1) in both cohorts. (4)
We evaluated the performance of the full KidneyIntelX
model for the individual components of the composite
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kidney end point. (5) We conducted Kaplan-Meier survival
analyses for time-dependent outcomes of 40% decline and
kidney failure with hazard ratios using the Cox proportional
hazards method for the high-risk (top 15%) versus the in-
termediate- and low-risk strata (bottom 50%). All analyses
were performed with R software (www.rproject.org).

Results
Baseline Characteristics of Cohorts

Patients with T2D (n=871). The median age was 60 years,
507 (58%) were female, and the median eGFR was 68
ml/min per 1.73 m? (Table 1). The most common comor-
bidities were hypertension (93%), coronary heart disease
(50%), and heart failure (22%). The majority (77%) were
on angiotensin-converting enzyme inhibitors or angio-
tensin receptor blockers. Patient characteristics including
events between the training and test cohorts were bal-
anced (Supplemental Table 1).

Patients with APOL1-HR (n=498). The median age was
56 years, 337 (67.6%) were female, and the median eGFR
was 83.3 ml/min per 1.73 m? (Table 1). The prevalence of
comorbidities were lower than the T2D cohort: hypertension
(44%), coronary heart disease (8%), and heart failure (3%).
Patient characteristics including events between the training
and test cohorts were comparable (Supplemental Table 2).

Composite Kidney End Point

For participants with T2D, 201 of the 871 (23%) experi-
enced the composite kidney end point over a median
follow-up of 4.6 (IQR, 3.4-5.6) years. In participants with

Table 1. Clinical characteristics at baseline

Characteristics

Type 2 DM (n=871)

APOLI-HR (n=498)

Clinical characteristics

Systolic BP in mm Hg, median (IQR)
Diastolic BP in mm Hg, median (IQR)
Follow-up time in years, median (IQR)
Laboratory characteristics
Baseline eGFR in ml/min per 1.73 m?, median (IQR)
Baseline UACR in mg/g, median (IQR)
UACR available, 1 (%)
Baseline hemoglobin A1C, median (IQR)
Medications
ACE/ARB at baseline, n (%)
Plasma biomarker concentrations
TNEFR1, in pg/ml, median (IQR)
TNFR2, in pg/ml, median (IQR)
KIM-1, in pg/ml, median (IQR)

131.9 (123.7-143.4)
734 (68.7-79.3)
45 (3.3-6.1)

68.4 (55.3-80.0)
13.0 (4.0-66.3)
486 (56%)

7.0 (6.2-8.7)

675 (77.5)
6057.0 (4764.9-8224.4)

6914.2 (5332.9-9832.9)
323.3 (196.8-592.1)

Age in yr, median (IQR) 60 (53-66) 56 (46-66)

Female, 1 (%) 507 (58.2) 337 (67.6)
Race

White 62 (7.1) 0

African ancestry 346 (39.7) 498 (100)

Hispanic/Latino 412 (47.3) 0

Other 51 (5.9) 0
Body Mass index in kg/ m?, median (IQR) 30.9 (26.6-36.1) 30.5 (26.2-35.8)
Hypertension, n (%) 813 (93.3) 220 (44.2)
Coronary artery disease, 1 (%) 432 (49.6) 39 (7.8)
Heart failure, 1 (%) 192 (22.0) 15 (3)

129 (117-140.5)
77 (69.5-84.5)
5.9 (3.9-7.1)

83.3 (68.9-99.4)
11 (4.5-55)
112 (23%)
5.9 (5.5-6.4)

122 (24.5)
2465 (1988-3266)

4215 (3234-5654)
154 (96-269)

DM, diabetes mellitus; IQR, interquartile range; UACR, urinary albumin-creatinine ratio; ACE, angiotensin-converting enzyme; ARB,
angiotensin receptor blocker; TNFR1 and TNFR2, tumor necrosis factor receptors 1 and 2; KIM-1, kidney injury molecule-1.
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Figure 1. | Stratification by KidneylIntelX predicted risk classified more patients correctly for the composite kidney end point than strat-
ification with predicted risk derived from the clinical model in both T2D and APOL1-HR population. (A) T2D cohort and (B) APOLT -HR
cohort. In those with T2D, a higher proportion of patients in the top 2 deciles of KidneylIntelX predicted risk experienced the composite kidney
end point than those in the top 2 deciles of the clinical model and a lower proportion of patients with T2D classified in the bottom 3 deciles of
risk experienced the composite kidney end point than those in the bottom 3 deciles of the clinical model. In those with APOL1-HR genotypes,
a higher proportion in the top 3 deciles of KidneyIntelX predicted risk experienced the composite kidney end point than those in the top 3 deciles
of the clinical model and a lower proportion of those in the lower 7 deciles of KidneylntelX experienced the composite kidney end point

compared to the clinical model.

the APOL1-HR genotypes, 90 of the 498 (18%) experienced
the composite kidney end point over a median follow-up of
5.9 (IQR, 3.9-7.1) years.

Machine Learning (Random Forest) Model for Prediction of
the Composite Kidney End Point

The observed composite kidney event by deciles of risk
with KidneyIntelX versus the standard clinical model (9) are
shown in Figure 1. For patients with T2D, applying 10-fold
cross-validation, the KidneyIntelX AUC in the training set
(80%, n=697) for the composite kidney end point was 0.81
(95% CI, 0.80 to 0.82) and 0.77 (95% CI, 0.75 to 0.79) in the
test set (20%, n=174). By comparison, the clinical model (9)
had an AUC of 0.66 (95% CI, 0.65 to 0.67) in the entire T2D
cohort (n=871).

For the patients with APOL1-HR genotypes, applying 10-
fold cross-validation, the AUC for KidneyIntelX in the
training set (80%, n=398) was 0.86 (95% CI, 0.84 to 0.87)
and 0.80 (95% CI, 0.77 to 0.83) in the test set (20%, n=99). The
clinical model (9) had an AUC of 0.72 (95% CI, 0.71 to 0.73)
in the APOL1-HR cohort (1=498).

In both the T2D and APOL1-HR cohorts, the features noted
to contribute most to performance were the three plasma
biomarkers (TNFR1, TNFR2, and KIM-1) or their ratios of
individual biomarker values to each other (i.e., three ratios) and
laboratory values or vital signs (either baseline or changes over
time) that are linked to kidney disease (Supplemental Figure 1).
The P values of the Hosmer—-Lemeshow goodness-of-fit test for
the prognostic models were 0.15 and 0.11, indicating there was
no significant difference between the predicted and observed
outcomes (Supplemental Figure 2).
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KidneylIntelX Cutoffs for the Composite Kidney End Point
(Entire T2D [n=871] and APOL1-HR [n=498] Cohorts)

The PPVs of KidneylIntelX were 58%, 62%, and 68% in the
top 20%, 15%, and 10% highest risk of the T2D population
versus 43%, 46%, and 54% in the top 20%, 15%, and 10% of
highest risk as classified by the clinical model (P<<0.01 for all
comparisons; Table 2) (9). The PPVs of KidneyIntelX were
56%, 62%, and 66% in the top 20%, 15%, and 10% highest
risk of APOL1-HR population versus PPV of 38%, 39%, and
40% of the highest risk as classified by the clinical model
(P<0.01 for all comparisons) (9). When applying cutoffs for
the lowest 50% of risk in the T2D cohort, the NPV for
KidneyIntelX compared with the clinical model was 92%
versus 85% (P=0.76). Similarly, for the APOLI-HR cohort,
the NPV for KidneyIntelX compared with the clinical model
was 96% versus 93% (P=0.93).

Supplementary and Sensitivity Analyses

Prevalent CKD. When we stratified the performance of
KidneylIntelX by baseline CKD (i.e., eGFR =60 ml/min per
1.73 m? and/or UACR =30 mg/g at baseline, n=366), 27.6%
experienced the primary composite kidney end point during
follow-up, compared with 12.5% in those without baseline
CKD (n=505). The AUC was 0.84 (95% CI, 0.81 to 0.87) in
individuals with prevalent CKD versus 0.79 (95% CIL, 0.75 to
0.83) in those without CKD (Table 3). For APOLI-HR
individuals, 112 had baseline prevalent CKD, of which
31.2% experienced the composite kidney end point. In this
subgroup, the KidneyIntelX model produced an AUC of
0.88 (95% (I, 0.84 to 0.92) versus the 386 without baseline
CKD, the AUC was 0.79 (95% CI, 0.77 to 0.82; Table 3).

Contemporary Data. Using contemporary data only
(data within 1 year before enrollment and biomarker mea-
surement), the discriminatory performance of the KidneyIn-
telX model in both the T2D (AUC, 0.78; 95% CI, 0.77 to 0.80)

Prognostic Test for Kidney Outcomes, Chauhan et al. 735

Table 3. AUCs (95% CI) for KidneyIntelX versus clinical model
for subgroups
] Clinical
Subgroup KidneyIntelX Model
12D
Prevalent CKD (1=366) 0.84 (0.81 to 0.70 (0.69 to
0.87) 0.71)
No CKD (n=>505) 0.79 (0.75 to 0.63 (0.61 to
0.83) 0.64)
Contemporary data 0.78 (0.77 to 0.66 (0.65 to
(n=871) 0.80) 0.67)
APOL1-HR
Prevalent CKD (n=112) 0.88 (0.84 to 0.59 (0.56 to
0.92) 0.61)
No CKD (1=386) 0.79 (0.76 to 0.74 (0.73 to
0.83) 0.75)
Contemporary data 0.79 (0.77 to 0.72 (0.71 to
(n=498) 0.82) 0.73)
AUC, area under the receiver operator characteristic; T2D, type
2 diabetes; APOLI-HR, high-risk APOL1.

and APOLI-HR (AUC, 0.79; 95% CI, 0.77 to 0.82) cohorts
were similar when all clinical data were available, demon-
strating KidneyIntelX is not dependent on multiyear history
to provide accurate prognostic information (Table 3).
Random Forest Model with and without Biomarkers. A
newly created random forest model with different clinical
features that did not include any of the biomarkers (TNFR1,
TNFR2, or KIM-1) in both cohorts had lower training and
test AUCs than the full KidneyIntelX model with plasma
biomarkers and their ratios (Supplemental Table 3).
Discrimination for Individual Components of the
Composite Kidney End Point. The discriminatory perfor-
mance of KidneyIntelX (trained for the entire composite end
point) for the individual components of the composite end

Table 2. KidneylntelX thresholds for the composite kidney end point with sensitivity, specificity, PPV and NPV for T2D and APOL1-HR
populations in high- and low-risk strata
Threshold Risk Cutoff Sensitivity Specificity PPV NPV

T2D KidneyIntelX

Bottom 50% 0.192 0.82 0.59 0.38 0.92

Top 20% 0.444 0.50 0.89 0.58 0.86

Top 15% 0.555 0.40 0.93 0.62 0.84

Top 10% 0.707 0.29 0.96 0.68 0.82
T2D clinical model

Bottom 50% 0.148 0.68 0.55 0.31 0.85

Top 20% 0.240 0.38 0.85 0.43 0.82

Top 15% 0.278 0.30 0.89 0.46 0.81

Top 10% 0.338 0.23 0.94 0.54 0.80
APOL1-HR KidneyIntelX

Bottom 50% 0.209 0.88 0.58 0.32 0.96

Top 20% 0.438 0.60 0.89 0.56 0.91

Top 15% 0.489 0.52 0.93 0.62 0.90

Top 10% 0.546 0.36 0.96 0.66 0.87
APOL1-HR clinical model

Bottom 50% 0.151 0.79 0.57 0.29 0.93

Top 20% 0.322 0.42 0.85 0.38 0.87

Top 15% 0.387 0.32 0.87 0.39 0.85

Top 10% 0.448 0.22 0.93 0.40 0.84
Risk Cutoff, predicted probability of the composite kidney end point; PPV, positive predictive value; NPV, negative predictive value;
T2D, type 2 diabetes; APOLI-HR, high-risk APOL1.
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Figure 2. | Patients with T2D or APOL1-HRclassified as high-risk by KidneyIntelX, experienced faster progression to end point of sustained
40% decline in eGFR or kidney failure. (A) T2D cohort and (B) APOLT -HR cohort. Separation of the high-risk stratum Kaplan-Meier curve
occurred within the first year and progressively declined over time. The proportion of population in each risk stratum were 50% in low-risk, 35%
in intermediate-risk, and 15% in high-risk in both T2D and APO7-HR. In the T2D cohort, the hazard ratio for high- versus low-risk strata was
16.8 (95% CI, 9.7 to 29.3) and was 9.9 (95% Cl 6.7-14.6) for high- versus low- and intermediate-risk strata combined. In the APOLT-
HR cohort, the hazard ratio for high- versus low-risk strata was 20.2 (95% Cl, 9.8 to 41.2) and was 9.1 (95% Cl, 5.8 to 14.3) for high-risk versus

the low- and intermediate-risk strata combined.

point (RKFD alone, sustained 40% decline alone, or kidney
failure alone) in the test cohorts for T2D and APOL1-HR did
not vary substantially (Supplemental Table 4).

Time-to-Event Analyses for 40% Sustained Decline in
eGFR or Kidney Failure. Patients with high-risk Kid-
neylntelX scores (top 15% in T2D and in APOL1-HR) had
a greater risk of progression to time-to-event categoric
outcomes of 40% sustained decline or kidney failure than
patients in the low- or medium-risk strata combined (hazard
ratios 9.9 [95% CI, 6.7 to 14.6] and 9.1 [95% CI, 5.8 to 14.3]),
respectively. Separation of the high-risk stratum Kaplan—
Meier curve occurred within the first year and progressively
declined over time (Figure 2).

Discussion

Using two large cohorts (T2D and APOL1-HR) of patients
at high risk for progressive kidney function decline, with
banked plasma samples linked to the corresponding EHR
data, we developed a prognostic model combining EHR
data and three previously validated plasma biomarkers to

predict a composite kidney end point, which included
RKFD, 40% sustained decline, or kidney failure. The Kid-
neyIntelX prognostic model was more accurate for predict-
ing the risk of kidney function decline than a validated
clinical model in this study population (9). The ability to
identify a distinct patient group with the composite kidney
end point with a PPV of >55% allows for more appropriate
future patient management including nephrologist referral,
improved awareness of kidney health, and guidance toward
more targeted, intensive therapies to slow progression. The
demonstrated PPV in the high-risk stratum represents a 3-
fold improvement over the observed baseline event rate in
the two populations.

CKD is a complex, common problem challenging modern
healthcare. In the absence of specific therapies, early iden-
tification of patients more likely to experience RKFD and
adverse kidney outcomes is paramount. Early identification
would help in the allocation of limited resources as well as
implementation or intensification of proven interventions to
slow kidney function decline. In real-world practice, the
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prediction of kidney disease progression in patients with
T2D and/or APOLI-HR is challenging, particularly in
patients with largely preserved kidney function. There
are two major problems contributing to the difficulties in
early identification and prediction: (1) serum creatinine/
eGFR and UACR are relatively insensitive and nonspecific
biomarkers, with significant fluctuations and variability in
early stages of CKD; and (2) the prevalent standard includes
recursive scores incorporating only a single (baseline) value
of a selected predictive feature and does not include
longitudinal data.

Recently, several biomarkers representing injury and in-
flammation have been the subject of an intense research
focus. Among these, three biomarkers (soluble TNFR1, sol-
uble TNFR2, and plasma KIM-1) have been extensively
validated in multiple studies to support their translation
to clinical use in a range of CKD settings, including patients
with and without T2D, as well as those with the APOL1-HR
genotypes (10,12-17,19,33,34). The individual biomarkers
have added a significant improvement to clinical metrics,
and the combination of all three, perhaps because of differ-
ent pathophysiologic pathways, appears to be synergistic
(12,33). We have demonstrated that combining these bio-
markers with clinical information using machine learning
techniques can significantly improve the discrimination/
prediction of composite kidney end points.

Biomarkers that can be measured during a routine clinical
encounter can be combined with longitudinal EHR data
present in most healthcare systems for optimal prediction.
We have previously shown that the addition of longitudinal
data using supervised machine learning significantly out-
performs “baseline” clinical models and also has utility for
subtyping disease trajectories (35,36). Thus, we hypothe-
sized that combining biomarker information and extant
longitudinal EHR data would improve prediction of future
kidney progression.

This integrated approach has near-term clinical implica-
tions, especially when linked to clinical decision support
and embedded care pathways within the EHR. For example,
patients with a high KidneylIntelX risk score, with a proba-
bility of >50% for the kidney end point, should be referred
to a nephrologist, which has been associated with improved
outcomes (37). In addition, referral of high-risk patients to
a dietician and the delivery of educational materials regard-
ing the importance and consequences of CKD should in-
crease awareness and facilitate motivation for changes in
lifestyles and behavior. Finally, the optimization of medical
therapy including renin-angiotensin-aldosterone system
inhibitors, statins for cardiovascular risk management,
and intensification of antihypertensive medication to meet
guideline-recommended BP targets can be pursued. The
application of sodium glucose transporter-2 inhibitors
might also be advantageous in the high KidneyIntelX score
group with T2D given recent data on robust renoprotection
(38-40).

Alternatively, patients with a low-risk score could be
clinically managed by their primary care provider and
have a standard-of-care treatment with scheduled mon-
itoring of their KidneylntelX results. Finally, patients
with an intermediate-risk score would be recommended
for the standard of care and retesting longitudinally. Such
patients may demonstrate changes in KidneyIntelX based
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on behavioral changes, clinical parameters, and treatment
adjustments over time, with appropriate clinical actions as
necessary. This overall approach would not only benefit
individual patient outcomes but also positively affect health
systems where there is uncertainty about which patients to
refer to a limited number of subspecialists.

Our study is not without limitations. Although we used
a multiethnic data set, further validation in geographically
diverse populations is necessary. Secondly, data structures/
relationships change over time due to adjusted practice
patterns and thus the algorithm may not perform similarly
if the full complement of longitudinal data is not available or
if the clinical practice is altered. We conducted a sensitivity
analysis with only 1 year of data available before baseline,
and the loss of performance was minimal; however, this
should be evaluated further in additional validation studies.
We have imputed the missing values for some features
using different imputation methods which can have an
effect on the correlations between features in the random
forest model. Because the training and testing were per-
formed within a single cohort, the potential for overfitting
exists. However, we plan to expand our analysis to inde-
pendent cohorts for external validation before prospective
testing. Finally, this analysis does not address implementa-
tion or utility. Therefore, a prospective clinical utility trial to
assess the decision effect of the KidneylIntelX risk score
when provided to primary care physicians and patients is
underway.

In conclusion, we have demonstrated that machine learn-
ing techniques (random forest models) combining longitu-
dinal EHR information with three plasma biomarkers
improved prediction of RKFD or kidney failure over vali-
dated clinical models in two distinct clinical settings and
populations. With the advent of advanced high-performance
computing, validated biomarkers, and an integrated EHR,
the ability to improve outcomes with the integration of the
KidneyIntelX into routine patient care should be assessed.
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Supplemental Figures 1:
A. SHAP plots for feature importance in T2D population.
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B. SHAP plots for feature importance in APOL1-HR population.
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Legend: SHAP: SHapley Additive exPlanations — these plots quantify the magnitude and direction (positive or
negative) of a feature’s effect on a prediction.



Supplemental Figure 2. Observed vs. Expected Plots (calibration plots) with 95% Confidence Interval in
Patients with T2D (Panel A) and APOL1-HR Genotypes (Panel B)
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Hosmer-Lemeshow goodness-of-fit test p-value 0.15 for T2D and 0.11 for APOL1-HR



Supplemental Table 1. Key Characteristics in Training and Test Datasets in T2D Cohort

Train Test
(n=696) (n=175)
Age in years, Median [IQR] 60 [53 - 67] 59 [51 - 66]

Female, n (%)

411 (59%)

96 (54.9 %)

Race, n (%)

African Ancestry

272 (39%)

74 (42.2%)

European American 48 (6.9%) 14 (8 %)
Hispanic Latino 337 (48.4%) 75 (42.9 %)
Others 39 (5.6) 1 (0.57 %)

Biomarkers, Median [IQR]

TNFR1 (pg/mL)

6025 [4765 - 8105]

6250 [4812 - 9097]

TNFR2 (pg/mL)

6825 [5262 - 9763]

7429 [5712 - 10312]

KIM-1 (pg/mL)

313.11 [196.96 - 562.36]

379.3 [201.6 - 722.5]

eGFR in ml/min/1.73 m?, Median [IQR]

70.04 [55.35 - 82.12]

68.27 [55.8 - 82]

Systolic BP in mm Hg, Median [IQR]

132 [120 - 146]

128 [120 - 140]

Diastolic BP in mm Hg, Median [IQR]

75 [67 - 83]

74 [66 - 80]




Supplemental Table 2. Key Characteristics in Training and Test Datasets in APOL1-HR Cohort

Train Test
(n=398) (n=100)
Age in years, Median [IQR] 49 [39 - 59] 52 [43 - 62]
Female, n (%) 269 (67.6%) 68 (68%)
Race, n (%)
African Ancestry 377 (95) 94 (94)
Hispanic Latino 9 (2.3) 4 (4)
Others 12 (3) 2(2)

Biomarkers, Median [IQR]

TNFR1 (pg/mL)

2467.7 [1989.7 - 3203]

2441 [1971 - 3397]

TNFR2 (pg/mL)

4254.8 [3231.9 - 5627.8]

4180 [3256 - 5675]

KIM-1 (pg/mL)

159.6 [96 - 275.5]

141.3[96.2 - 236.7]

eGFR in ml/min/1.73 m?, Median [IQR] 82 [68.3 - 98.5] 82.4[66.1 - 99.3]
Systolic BP in mm Hg, Median [IQR] 130.2 [117 - 140] 131 [118.0 - 143]
Diastolic BP in mm Hg, Median [IQR] 76.8 [70 - 84.8] 79.5[70 - 86]




Supplemental Table 3. AUCs for Random Forest Models with Clinical Features Alone and with Addition

of Plasma Biomarkers and Ratios in Training and Test Cohorts

T2D

APOL1-HR

Subgroup

Random Forest
Model without
Biomarkers?

KidneylintelX (with
Biomarkers)

Subgroup

Random Forest
Model without
BiomarkersP

KidneylintelX
(with Biomarkers)

Training (N=696)

0.78 (0.77-0.79)

0.81 (0.80-0.82)

Training (n=398)

0.84 (0.83-0.85)

0.86 (0.84-0.87)

Test (n=175)

0.72 (0.7-0.75)

0.77 (0.75-0.79)

Test (n=100)

0.78 (0.76-0.82)

0.80 (0.77-0.83)

aClinical features for the random forest model without biomarkers included minimum hematocrit, baseline hematocrit,
baseline HbAlc, maximum serum glucose, median serum glucose, baseline BMI, median serum calcium, median serum
chloride, and baseline UACR

b Clinical features for the random forest model without biomarkers included age, baseline serum calcium, minimum serum

calcium, baseline triglycerides, baseline diastolic blood pressure, and maximum diastolic blood pressure

Note: the features and hyperparameters for the random forest model without biomarkers are different than the features
and hyperparameters used in the final fully integrated KidneyintelX model with biomarkers (as shown in Supplemental

Figures 1A and 1B).




Supplemental Table 4. KidneylIntelX Discrimination for the Individual Components of the Composite
Kidney End Point

T2D (Test set, n=175) APOL1-HR (Test set, n=100)
Endpoint AUC (95% CI) Endpoint AUC (95% CI)
Full composite outcome 0.78 (0.75-0.79) Full composite outcome 0.80 (0.77-0.83)
RKFD alone 0.79 (0.78-0.80) RKFD alone 0.80 (0.78-0.82)
Sustained 40% decline alone 0.82 (0.81-0.83) Sustained 40% decline alone 0.84 (0.82-0.85)
“Kidney Failure” alone 0.94 (0.93-0.95) “Kidney Failure” alone NR*

NR= not reported

*there were only 5 events of kidney failure in the entire 498 participants in the APOL1-HR cohort, thus we could not
calculate an AUC for this outcome in this cohort

RKFD= rapid kidney function decline (eGFR slope decline of 25 ml/min/1.73 m2/year)

Kidney Failure= sustained eGFR <15 ml/min/1.73 m? confirmed at least 30 days later, or long-term maintenance dialysis
or kidney transplant (i.e. ESKD).



